Enrollment No: _____

Exam Seat No:

C.U.SHAH UNIVERSITY

Winter Examination-2018

Subject Name: Engineering Mathematics - II

Subject Code: 4TE02EMT3 Branch: B. Tech (All)

Semester: 2 Date: 23/10/2018 Time: 02:30 To 05:30 Marks: 70

Instructions:

- (1) Use of Programmable calculator & any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

Q-1 Attempt the following questions:

(14)

a) The interval of convergence of the logarithmic series

$$\log(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots \infty$$
 is

(A)
$$-1 < x \le 1$$
 (B) $-1 < x < 2$ (C) $-\infty < x < \infty$ (D) $-1 \le x \le 1$

b) The infinite series $1+r+r^2+....+r^{n-1}$ is divergent if

(A)
$$|r| < 1$$
 (B) $|r| > 1$ (C) $r \ge 1$ (D) $r = -1$

c)
$$\int_{0}^{\frac{\pi}{2}} \sin^4 x \cos^2 x \, dx$$
 is equal to

(A)
$$\frac{1}{16}$$
 (B) $\frac{1}{32}$ (C) $\frac{\pi}{4}$ (D) $\frac{\pi}{32}$

d) Let f(b) be an odd function in the interval $\left[-\frac{T}{2}, \frac{T}{2}\right]$ with a period T, then

$$F(x) = \int_{a}^{x} f(t) dt \text{ is}$$

- (A) periodic (B) non-periodic (C) periodic with period 2T
- (D) periodic with period 4T
- e) If f is continuous, decreasing function on $[1,\infty)$ and $\lim_{x\to\infty} f(x) = 0$, then

$$\int_{1}^{\infty} f(x) dx \text{ is convergent.}$$

f)
$$4.5 =$$

(A)
$$\frac{\sqrt{\pi}}{16}$$
 (B) $\frac{105\sqrt{\pi}}{16}$ (C) $\frac{5\sqrt{\pi}}{16}$ (D) none of these

g) Duplication formula:
$$\sqrt{n} = \frac{1}{2} = \frac{1}{2}$$

(A)
$$\frac{\sqrt{\pi} \ln}{2^{2n-1}}$$
 (B) $\frac{\sqrt{\pi} \ln}{2^{n-1}}$ (C) $\frac{\sqrt{\pi} \ln}{2^{2n-1}}$ (D) $\frac{\sqrt{\pi} \ln}{2^{n-1}}$

h) If the two tangents at the point are real and distinct the double point is called (A) a node (B) a cusp (C) a conjugate point (D) none of these

i)
$$\int_{0}^{1} \int_{0}^{x} e^{x} dx dy \text{ is equal to}$$

(A)
$$-1$$
 (B) 1 (C) e (D) e^{-1}

j) The transformations x + y = u, y = uv transform the area element dy dx into |J| du dv, where |J| is equal to

(A) 1 (B) u (C) – 1 (D) none of these

Q-2

1) The degree of the differential equation $\frac{d^2y}{dx^2} + 3\left(\frac{dy}{dx}\right)^2 = x\log\left(\frac{d^2y}{dx^2}\right)$ is

(A) 1 (B) 2 (C) 3 (D) none of these

m) If $\frac{dy}{dx} + \frac{1}{y\sqrt{1-x^2}} = 0$, then which of the following statements is true?

(A)
$$y + \sin^{-1} x = 0$$
 (B) $y^2 + 2\sin^{-1} x = c$ (C) $x + \sin^{-1} y = c$ (D) $y = k$

n) The homogeneous differential equation $f_1(x, y)dx + f_2(x, y)dy = 0$ can be reduced to a differential equation in which the variables are separated, by the substitution

(A)
$$y = vx$$
 (B) $x + y = v$ (C) $xy = v$ (D) $x - y = v$

Attempt any four questions from Q-2 to Q-8

Attempt all questions (14)

a) Show that
$$\sum_{n=1}^{\infty} \frac{1}{n^p} = \frac{1}{1^p} + \frac{1}{2^p} + \frac{1}{3^p} + \dots + \frac{1}{n^p} + \dots$$
 is (i) convergent if $p > 1$ and (ii) divergent if $p \le 1$.

b) Using reduction formula evaluate
$$\int_{0}^{\frac{1}{2}} x^{3} \sqrt{1 - 4x^{2}} dx$$
. (5)

c) Prove that
$$\int_{0}^{2} x^{4} (8 - x^{3})^{-\frac{1}{3}} dx = \frac{16}{3} B \left(\frac{5}{3}, \frac{2}{3} \right)$$
. (4)

Q-3 Attempt all questions (14)

a) Evaluate:
$$\int_{0}^{1} x^{m} \left(\log \frac{1}{x} \right)^{n} dx$$
 (5)

b) Using reduction formula prove that
$$\int_{0}^{a} x^{5} \left(2a^{2} - x^{2}\right)^{-3} dx = \frac{1}{2} \left(\log 2 - \frac{1}{2}\right).$$
 (5)

	c)	Discuss the convergence of $\sum \frac{\sqrt{n+1}-\sqrt{n}}{n}$.	(4)
0-4			(14)
		$a^{a+\sqrt{a^2-y^2}}$	()
	a)	Attempt all questions Change the order of integration in $\int_{0}^{a} \int_{a-\sqrt{a^2-y^2}}^{a+\sqrt{a^2-y^2}} dx dy$ and evaluate it.	(5)
	b)	Test for convergence the series $2 + \frac{3}{2}x + \frac{4}{3}x^2 + \frac{5}{4}x^3 +(x > 0)$ by ratio test.	(5)
	c)	Solve: $\frac{dy}{dx} = \cos x \cos y - \sin x \sin y$	(4)
Q-5		Attempt all questions	(14)
	a)	Solve: $\frac{dy}{dx} = \frac{y^3}{e^{2x} + y^2}$	(5)
	b)		(5)
	D)	Evaluate the double integral $\iint_R (x^2 + y^2) dxdy$, where R is the square bounded by	(3)
		lines $y = x$, $y = -x$, $x - y = 2$, $x + y = 2$ using transformations, $u = x + y$ and	
		v = x - y.	
		$\frac{\pi}{6}$	(4)
	c)	Using reduction formula, evaluate $\int_{0}^{\frac{\pi}{6}} \cos^{6} 3\theta \sin^{2} 6\theta \ d\theta$.	(4)
Q-6		Attempt all questions	(14)
	a)	Prove that $\int_{-\infty}^{\infty} e^{-k^2 x^2} dx = \frac{\sqrt{\pi}}{k}.$	(5)
	b)	Solve: $\left(x^2 - y^2\right) dy = 2xy dx$	(5)
	c)	Evaluate: $\int_{0}^{\frac{\pi}{2}} \int_{0}^{a \sin \theta} \int_{0}^{\frac{a^2 - r^2}{a}} r dr d\theta dz$	(4)
Q-7		Attempt all questions	(14)
	a)	Find the asymptotes of the curve $y^3 - x^2(6-x) = 0$.	(5)
	b)	Find the area of the region outside the circle $r = 2$ and inside the lemniscate	(5)
		$r^2 = 8\cos 2\theta.$	
	c)	Investigate the convergence of $\int_{2}^{5} \frac{1}{\sqrt{(x-2)}} dx$.	(4)
Q-8		Attempt all questions	(14)
	a)	Evaluate: $\int_{2}^{\infty} \frac{x+3}{(x-1)(x^2+1)} dx$	(5)
	b)	Trace the curve $r = a(1 + \cos \theta)$.	(5)
	c)	Find the length of the arc of the Catenary $y = c \cosh\left(\frac{x}{c}\right)$ measured from the	(4)
	C)		(-)
		vertex $(0, c)$ to any point on the Catenary.	

